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Abstract
Correlation functions for matrix ensembles with orthogonal and unitary-
symplectic rotation symmetry are more complicated to calculate than in the
unitary case. The supersymmetry method and the orthogonal polynomials are
two techniques to tackle this task. Recently, we presented a new method to
average ratios of characteristic polynomials over matrix ensembles invariant
under the unitary group. Here, we extend this approach to ensembles with
orthogonal and unitary-symplectic rotation symmetry. We show that Pfaffian
structures can be derived for a wide class of orthogonal and unitary-symplectic
rotation invariant ensembles in a unifying way. This also includes those for
which this structure was not known previously, as the real Ginibre ensemble
and the Gaussian real chiral ensemble with two independent matrices as well.

PACS numbers: 02.30.Px, 05.30.Ch, 05.30.−d, 05.45.Mt

1. Introduction

There are many applications of random matrix theory in physics as well as in mathematics
[1–5]. Different matrix ensembles describe universal features of eigenvalue statistics in spectra
stemming of various physical systems. For example the chiral (Laguerre) ensembles with two
independent matrices [6–9] and the Ginibre ensembles [10–16] describe universal properties
of the Dirac operator and the Hamilton operator with chemical potential.

To model physical systems, one has to use Hermitian matrices, if there are no further
constraints. In the case of time reversal invariance, the matrices to be employed are real-
symmetric or quaternionic self-dual depending on the behavior of the system under space
rotations. These three symmetry classes are referred to as unitary, orthogonal and unitary-
symplectic, respectively. The mean values of characteristic polynomial ratios are important
quantities to characterize those ensembles. The matrix Green’s function [17, 18], the replica
trick [19] and the investigation of the sign problem in quantum chromodynamics (QCD) [20]
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are based on such correlation functions. For many ensembles with factorizing probability
density it is known that those averages have a Pfaffian structure [5, 8, 14, 18]. The kernels of
the Paffians are mean values of one and two characteristic polynomials. Thus, all eigenvalue
correlations are completely determined by the correlations of the lowest order.

The method of orthogonal polynomials [21–23] and the supersymmetry method
[9, 24, 25] are successful techniques to derive those Pfaffian structures. Recently, we
presented a new approach to derive determinantal structures for unitary rotation invariant
matrix ensembles in a unifying way [26]. Here, we generalize this approach to ensembles
with orthogonal and unitary-symplectic rotation symmetry. This also includes real Ginibre
ensembles and Gaussian real chiral ensemble with two independent matrices for which the
Pfaffian structures were unknown up to now.

We structure this contribution as follows. In section 2, we outline our approach. The
general result is presented in section 3. We give explicit formulas for the real symmetric and
the Hermitian self-adjoint matrix ensemble in section 4. In the same section, we also present
two lists of matrix ensembles with orthogonal and unitary-symplectic symmetry to which
our method can be applied. Concluding remarks are made in section 5. In appendix A, we
explicitly derive some of the equations in section 3.

2. Outline

We consider averages of ratios of characteristic polynomials over the Hermitian self-dual
matrices

Z(κ) =
∫

P(H)

k∏
j=1

det(H − κj2112N)

det(H − κj1112N)
d[H ]. (2.1)

The probability density P is rotation invariant and factorizes in the eigenvalues of H, that is, in
E = diag(E1, . . . , EN)⊗ 112. We choose κ = diag(κ11, . . . , κk1, κ12, . . . , κk2) = diag(κ1, κ2)

in such a way that the integrals are well defined. The matrix 112N is the 2N -dimensional unit
matrix. Changing to eigenvalue-angle-coordinates yields

Z(κ) = c

∫ N∏
a=1

k∏
b=1

P(Ea)
(Ea − κb2)

2

(Ea − κb1)2
�4

N(E) d[E] (2.2)

with a normalization constant c. The Vandermonde determinant is defined by

�N(E) =
∏

1�a<b�N

(Ea − Eb) = (−1)N(N−1)/2 det
[
Eb−1

a

]
1�a,b�N

. (2.3)

Introducing Dirac distributions, we extend the N eigenvalue integrals to 2N eigenvalue integrals
and have

Z(κ) = c

∫ N∏
j=1

g(Ej ,Ej+N)

2N∏
a=1

k∏
b=1

(Ea − κb2)

(Ea − κb1)
�2N(E) d[E], (2.4)

where

g(Ej ,Ej+N) = P(Ej )
δ(Ej − Ej+N)

Ej − Ej+N

. (2.5)

In the next step we use the method developed in [26] based on the idea of Basor and
Forrester [27]. We extend the product of the characteristic polynomials times the Vandermonde
determinant by the Cauchy determinant√

Ber(2)

(k/k)(κ) = �k(κ1)�k(κ2)∏k
a,b=1(κa1 − κb2)

= (−1)k(k−1)/2 det

[
1

κa1 − κb2

]
1�a,b�k

. (2.6)
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Note that the product

�k(κ2)

2N∏
a=1

k∏
b=1

(Ea − κb2)�2N(E) = �k+2N(κ2, E) (2.7)

yields another Vandermonde determinant. Then we have√
Ber(2)

(k/k+2N)(κ1; κ2, E) = ± �k(κ1)�k+2N(κ2, E)∏k
a,b=1(κa1 − κb2)

∏k
a=1

∏N
b=1(κa1 − Eb)

= ± det

⎡⎢⎣
1

κa1 − κb2

1

κa1 − Eb

κa−1
b2 Ea−1

b

⎤⎥⎦ (2.8)

times the product of g in the integrand (2.4). The notation follows the one in [26] where
we have also proven the second equality in equation (2.8). A Berezinian is a Jacobian in
superspace. The index (2) at the Berezinian refers to the Dyson index β = 2. The function
Ber(2)

(k/k+2N) appears by diagonalizing Hermitian supermatrices σ = UsU † with a unitary
supermatrix U ∈ U(k/k + 2N), i.e. it is defined by∫

f (σ) d[σ ] =
∫

f (UsU †)
∣∣Ber(2)

(k/k+2N)(s)
∣∣ d[s] dμ(U) + b.t. (2.9)

for an arbitrary superfunction f . The measure dμ(U) is the Haar measure on U(k/k + 2N)

and ‘b.t.’ denotes the Efetov–Wegner boundary terms [28–30] which may arise in such a
transformation.

As already pointed out in [26], this intimate relation to supersymmetry allows us to refer to
our approach as ‘supersymmetry without supersymmetry’, because we never actually map the
matrix model onto superspace. Nevertheless, we establish the previously unknown connection
to superspace.

Integrating over all energies Ej with j > N in equation (2.4), we obtain

Z(κ) = c√
Ber(2)

(k/k)(κ)

∫
det

⎡⎢⎣
1

κa1 − κb2

1

κa1 − Eb

∫
g(Eb,E)

κa1 − E
dE

κa−1
b2 Ea−1

b

∫
g(Eb,E)Ea−1 dE

⎤⎥⎦ d[E]. (2.10)

With the help of a modified version of de Bruijn’s integral theorem [31], cf Appendix C.2 in
[26], we integrate over the remaining variables and find the Pfaffian expression

Z(κ) = c√
Ber(2)

(k/k)(κ)

Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

κb1 − κa2
κb−1

a2

1

κb2 − κa1
F(κa1, κb1) Gb(κa1)

−κa−1
b2 −Ga(κb1) Mab

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.11)

We give a detailed definition of the functions F, Ga and Mab in section 3. Here, we schematically
explain what these functions are. The function F is almost the average over two-dimensional
Hermitian self-dual matrices of two characteristic polynomials in the denominator. The
functions Ga are Cauchy transforms of the moments of P and Mab is the anti-symmetric
moment matrix of P generating the skew orthogonal polynomials of quaternion type [5].

Since the Pfaffian determinant is skew symmetric in the pairs of rows and columns, we
can construct any linear independent set of polynomials in the last columns and rows in

3
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equation (2.11). For example, the skew orthogonal polynomials yield a block diagonal
moment matrix Mab which leads immediately to the well-known result expressed in terms of
skew orthogonal polynomials. Here, we leave the monomials as they are and use

Pf

[
A B

−BT D

]
= PfD Pf[A + BD−1BT ] (2.12)

for the arbitrary matrices A, B and an invertible, anti-symmetric, even-dimensional matrix D.
The matrix A has to be even dimensional and anti-symmetric too. As Mab is even dimensional,
we arrive at the final result

Z(κ) = c√
Ber(2)

(k/k)(κ)

× Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2N∑
m,n=1

κm−1
a2 M−1

mnκn−1
b2

1

κb1 − κa2
+

2N∑
m,n=1

κm−1
a2 M−1

mnGn(κb1)

1

κb2 − κa1
+

2N∑
m,n=1

Gm(κa1)M
−1
mnκn−1

b2 F(κa1, κb1) +
2N∑

m,n=1

Gm(κa1)M
−1
mnGn(κb1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= c√

Ber(2)

(k/k)(κ)

Pf

[
K11(κb2, κa2) K12(κa2, κb1)

−K12(κa1, κb2) K22(κa1, κb1)

]
. (2.13)

This is, indeed, the correct result which we found without making use of the Dyson–Mehta–
Mahoux theorem [32]. Although we can employ an arbitrary choice of polynomial set,
we obtain the skew orthogonal polynomials generated by Mab. Thus, the skew orthogonal
polynomials are a result, not an input.

We show in the ensuing sections how Pfaffian structures for a wide class of matrix
ensembles can be obtained in a unifying way. Our method is applicable not only for unitary-
symplectic symmetry but also for orthogonal symmetric ensembles. We will argue that there
is no difference between both symmetries in the derivation. Hence, the Pfaffian structure of
averages similar to equation (2.1) is elementary.

3. Main result

We consider the integral

Z
(2N+1)

(k1/k2)
(κ) =

∫
C2N+1

h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

∏2N+1
a=1

∏k2
b=1(za − κb2)∏2N+1

a=1

∏k1
b=1(κb1 − za)

�2N+1(z) d[z]. (3.1)

We choose the functions h and g and the external variables κ = diag(κ11, . . . , κk11, κ12,

. . . , κk22) in such a way that the integral exists. With the two-dimensional Dirac distribution
h(z2N+1) = δ(2)(z2N+1) and with the function g̃(z2j−1, z2j ) = z2j−1z2j g(z2j−1, z2j ), we regain
another important integral

Z
(2N)

(k1/k2)
(κ) =

∫
C2N

N∏
j=1

g̃(z2j−1, z2j )

∏k2
a=1

∏2N
b=1(κa2 − zb)∏k1

a=1

∏2N
b=1(κa1 − zb)

�2N(z) d[z], (3.2)

which we calculate in the following.
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As in [26], we extend the integrand in equation (3.1) by
√

Ber(2)

(k1/k2)
(κ) and obtain

Z
(2N+1)

(k1/k2)
(κ) =

∫
C2N+1

h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

√
Ber(2)

(k1/k2+2N+1)(z̃)√
Ber(2)

(k1/k2)
(κ)

d[z], (3.3)

where we define z̃ = diag(κ1; κ2, z). The extension was made in the same way as described
in the previous section. We then use the determinantal structure (2.8) of the square root
Berezinian in the numerator for the integration. In appendix A.1 we explicitly calculate
equation (3.3) for odd d = k2 − k1 + 2N + 1 � 0 using the sketch of section 2 and find

Z
(2N+1)

(k1/k2)
(κ) = (−1)N+1N !PfM(d)√

Ber(2)

(k1/k2)
(κ)

× Pf

⎡⎢⎢⎢⎣
{
K

(d)
11 (κa2, κb2)

}
1�a,b�k2

{
K

(d)
12 (κb1, κa2)

}
1�a�k2

1�b�k1{−K
(d)
12 (κa1, κb2)

}
1�a�k1

1�b�k2

{
K

(d)
22 (κa1, κb1)

}
1�a,b�k1

⎤⎥⎥⎥⎦ , (3.4)

where

F(κa1, κb1) = −(κa1 − κb1)Z
(2)

(2/0)(κa1, κb1)

= −(κa1 − κb1)

∫
C2

g(z1, z2)(z1 − z2)

(κa1 − z1)(κa1 − z2)(κb1 − z1)(κb1 − z2)
d[z], (3.5)

G(d)(κa1) =
⎡⎣
⎧⎨⎩
∫

C2
det

⎡⎣g(z1, z2)

κa1 − z1

g(z1, z2)

κa1 − z2

zb−1
1 zb−1

2

⎤⎦ d[z]

⎫⎬⎭
1�b�d

−
∫

C

h(z)

κa1 − z
dz

⎤⎦ , (3.6)

K(d)(κa2) = [{
κb−1

a2

}
1�b�d

0
]
, (3.7)

K
(d)
11 (κa2, κb2) = K(d)(κa2)M−1

(d)K
T
(d)(κb2), (3.8)

K
(d)
12 (κb1, κa2) = 1

κb1 − κa2
+ K(d)(κa2)M−1

(d)G
T
(d)(κb1), (3.9)

K
(d)
22 (κa1, κb1) = F(κa1, κb1) + G(d)(κa1)M−1

(d)G
T
(d)(κb1). (3.10)

Here, we use the moment matrix

M(d) =

⎡⎢⎢⎢⎣
{∫

C2
det

[
g(z1, z2)z

a−1
1 zb−1

1

g(z1, z2)z
a−1
2 zb−1

2

]
d[z]

}
1�a,b�d

{
−

∫
C

h(z)za−1 dz

}
1�a�d{∫

C

h(z)zb−1 dz

}
1�b�d

0

⎤⎥⎥⎥⎦ (3.11)

of our probability densities h and g. Let SM be the permutation group of M elements and the
function ‘sign’ equals ‘+1’ for even permutations and ‘−1’ for odd ones. We fix the sign of
the Pfaffian for an arbitrary anti-symmetric 2N × 2N matrix {Dab} by

Pf[Dab]1�a,b�N = 1

2NN !

∑
ω∈S2N

sign(ω)

N∏
j=1

Dω(2j)ω(2j+1). (3.12)

5
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The sums in equation (2.13) for Hermitian self-dual matrices are encoded in the matrix
products of equations (3.8)–(3.10). Indeed, we see that the sketch of the approach in
section 2 can readily be extended from this particular case to the quite general integral (3.1).

The integral kernels (3.8)–(3.10) have a simple relation to the generating function
(3.1) with other parameters than k1, k2 and N. We identify them with the particular cases
(k1 = 0, k2 = 2), (k1 = 1, k2 = 1) and (k1 = 2, k2 = 0):

K
(2N+3)
11 (κa2, κb2) = (−1)N+1 κa2 − κb2

N !PfM(2N+3)

Z
(2N+1)

(0/2) (κa2, κb2), (3.13)

K
(2N+1)
12 (κb1, κa2) = (−1)N+1 1

N !PfM(2N+1)(κb1 − κa2)
Z

(2N+1)

(1/1) (κb1, κa2), (3.14)

K
(2N−1)
22 (κa1, κb1) = (−1)N+1 κa1 − κb1

N !PfM(2N−1)

Z
(2N+1)

(2/0) (κa1, κb1). (3.15)

The normalization constant is defined by the case k1 = k2 = 0:

C(2N+1) = Z
(2N+1)

(0/0) = (−1)N+1N !PfM(2N+1). (3.16)

Hence, we plug these relations into equation (3.4) which leads to the result

Z
(2N+1)

(k1/k2)
(κ) = (−1)(k

2
2−k2

1)/4+k1+1N ![(−1)NPfM(d)]1−(k1+k2)/2√
Ber(2)

(k1/k2)
(κ)

× Pf

⎡⎢⎢⎢⎢⎢⎢⎣

{
(κb2 − κa2)Z

(d−2)

(0/2) (κa2, κb2)

[(d − 3)/2]!

}
1�a,b�k2

{
Z

(d)

(1/1)(κb1, κa2)

[(d − 1)/2]!(κb1 − κa2)

}
1�a�k2

1�b�k1{
Z

(d)

(1/1)(κa1, κb2)

[(d − 1)/2]!(κb2 − κa1)

}
1�a�k1

1�b�k2

{
(κb1 − κa1)Z

(d+2)

(2/0) (κa1, κb1)

[(d + 1)/2]!

}
1�a,b�k1

⎤⎥⎥⎥⎥⎥⎥⎦ .

(3.17)

When d is odd, k1+k2 is even. Thus, the Pfaffians are well defined. Equation (3.17) implies that
the correlations for two characteristic polynomials determine all other eigenvalue correlations
if the probability density has the factorizing structure as in equation (3.1).

For the case that k2 + k1 is odd, we extend the integral

Z
(2N+1)

(k1/k2)
(κ) = − lim

κ02→∞
Z

(2N+1)

(k1/k2+1)(κ)

κ2N+1
02

(3.18)

by an additional parameter κ02. This trick is similar to the one in [26, 33]. Defining
d̃ = k2 − k1 + 2N + 2 � 0, we apply the result (3.17) and find

Z
(2N+1)

(k1/k2)
(κ) = (−1)(k2+k1+1)/2N !√

Ber(2)

(k1/k2)
(κ)

× Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎧⎨⎩−Z
(d̃−2)

(0/1) (κb2)

[(d̃ − 3)/2]!

⎫⎬⎭1�b�k2

⎧⎨⎩−Z
(d̃)

(1/0)(κb1)

[(d̃ − 1)/2]!

⎫⎬⎭1�b�k1⎧⎨⎩Z
(d̃−2)

(0/1) (κa2)

[(d̃ − 3)/2]!

⎫⎬⎭ 1�a�k2

{
K

(d̃)
11 (κa2, κb2)

}
1�a,b�k2

{
K

(d̃)
12 (κb1, κa2)

}
1�a�k2

1�b�k1⎧⎨⎩ Z
(d̃)

(1/0)(κa1)

[(d̃ − 1)/2]!

⎫⎬⎭ 1�a�k1

{−K
(d̃)
12 (κa1, κb2)

}
1�a�k1

1�b�k2

{
K

(d̃)
22 (κa1, κb1)

}
1�a,b�k1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.19)

6
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in the limit κ02 → ∞. We note the appearance of one-point functions. Equation (3.19) is the
analog for odd k2 + k1 to the result (3.17) which is true for even k2 + k1.

Results (3.17) and (3.19) are also true for the integral (3.2). We simply have to choose
h as a Dirac distribution. This relation is well known [5] for odd- and even-dimensional
ensembles over real symmetric matrices or circular orthogonal matrices. Since the probability
densities g and h are quite arbitrary this result considerably extends the one found by Borodin
and Strahov [18].

We are also interested in the case of d = k2 − k1 + 2N + 1 � 0. Employing the sketched
derivation in appendix A.2, we have the result

Z
(2N+1)

(k1/k2)
(κ) = (−1)NN !√

Ber(2)

(k1/k2)
(κ)

× Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

{
1

κb1 − κa2

}
1�a�k2

1�b�k1

0 0 0
{
Z

(1)

(1/0)(κb1)
}

1�b�k1

0 0 0
{
κa−1

b1

}
1�a�−d

1�b�k1{
1

κb2 − κa1

}
1�a�k1

1�b�k2

{−Z
(1)

(1/0)(κa1)
}

1�a�k1

{−κb−1
a1

}
1�a�k1

1�b�−d

{F(κa1, κb1)}1�a,b�k1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.20)

For the integral (3.2), we have to omit the column and the row with Z
(1)

(1/0) and have to replace
d by 2N + k2 − k1. The matrix in the Pfaffian (3.20) is, indeed, even dimensional. Thus, the
expression is well defined.

The Pfaffian structure of the sparsely occupied matrix (3.20) for d � 0 is a new result. The
row and the column with Z

(1)

(1/0) only appears for odd dimensional, real symmetric matrices.
This factor is the Cauchy-transform of the probability density itself. The function F is almost
the mean value of the two characteristic polynomials in the denominator which has to be
calculated too. However, the N eigenvalue integrals are drastically reduced to one- or two-
dimensional integrals.

4. Applications

In section 4.1, we apply the general results to two ensembles over real symmetric matrices
and Hermitian self-dual matrices. We give an overview of applications for ensembles which
are rotation invariant under the orthogonal and unitary-symplectic group in section 4.2.

4.1. Rotation invariant ensembles over real symmetric matrices and Hermitian self-dual
matrices

We consider mean values of characteristic polynomials for a rotation invariant probability
density P over the real symmetric matrices Herm(1, N) or the Hermitian self-adjoint matrices
Herm(4, N), respectively:

Z
(N,β)

(k1/k2)
(κ) =

∫
Herm(β,N)

P (H)

∏k2
j=1 det(H − κj211γN)∏k1
j=1 det(H − κj111γN)

d[H ]. (4.1)

7
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The constant γ equals 1 for the real case and 2 for the quaternionic case. Such averages
were considered before [18, 24, 34, 35]. Here, we apply our method to show that the Pfaffian
structure arises in a purely algebraic way. As far as we know this is a new insight.

The generating function (4.1) is related to the matrix Green’s function and thus to the k-
point correlation functions. These matrix ensembles describe time-reversal invariant systems.

For the quaternionic case, the diagonalization of H leads to the identification

g̃(z1, z2) = P(x1)δ(y1)δ(y2)
δ(x2 − x1)

x1 − x2
, (4.2)

cf equation (3.2), and

Z
(2N)

(k1/k2)
(κ) = N !

C
(4)
N

Z
(N,4)

(k1/k2)
(κ) (4.3)

with

C
(4)
N = (−1)N(N−1)/2

N∏
j=1

π2(j−1)


(2j)
. (4.4)

Hence, we plug these relations into equation (3.17) for the case c = N + (k2 − k1)/2 ∈ N and
find

Z
(N,4)

(k1/k2)
(κ) = C

(4)
N Z

(c,4)

(0/0)

C
(4)
c

√
Ber(2)

(k1/k2)
(κ)

× Pf

⎡⎢⎢⎢⎢⎢⎢⎣
(κb2 − κa2)

C(4)
c Z

(c−1,4)

(0/2) (κa2, κb2)

C
(4)
c−1Z

(c,4)

(0/0)

Z
(c,4)

(1/1)(κb1, κa2)

(κb1 − κa2)Z
(c,4)

(0/0)

Z
(c,4)

(1/1)(κa1, κb2)

(κb2 − κa1)Z
(c,4)

(0/0)

(κb1 − κa1)
C(4)

c Z
(c+1,4)

(2/0) (κa1, κb1)

C
(4)
c+1Z

(c,4)

(0/0)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.5)

The indices a and b numerate all variables κ and, thus, the upper-left block and the lower-right
block are a k2 × k2 matrix and a k1 × k1 matrix, respectively. Similarly, one finds results for
the cases of odd k2 − k1 or negative integer 2N + k2 − k1 + 1 according to equations (3.19) and
(3.20).

Let N = 2L + χ with χ ∈ {0, 1}. The diagonalization in the real case leads to a product
of Heavyside distributions �(Ej+1 − Ej), j ∈ {1, . . . , N − 1}, which is equivalent to the
ordering of the eigenvalues E1 � E2 � · · · � EN . Let zj = Ej + ıyj . We split the product of
Heavyside distributions into two products:

N−1∏
j=1

�(Ej+1 − Ej) =
L+χ−1∏

j=1

�(E2j+1 − E2j )

L∏
j=1

�(E2j − E2j−1). (4.6)

We absorb the second product of equation (4.6) into the probability density and define the
probability densities

g(z1, z2) = g̃(z1, z2) = P(E1)P (E2)δ(y1)δ(y2)�(E2 − E1) (4.7)

and

h(z) = P(E)δ(y), (4.8)

according to even and odd N. Due to the integration method over alternate variables [36], we
identify

8
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Z
(2L+χ)

(k1/k2)
(κ) = L!

C
(1)
2L+χ

Z
(2L+χ,1)

(k1/k2)
(κ) (4.9)

with

C
(1)
2L+χ = (−1)χk1

2L+χ∏
j=1

π(j−1)/2


(j/2)
. (4.10)

Again, we rewrite equation (3.17) with the help of relation (4.9) and have for even
c̃ = 2L + k2 − k1

Z
(2L+χ,1)

(k1/k2)
(κ) = C

(1)
2L+χZ

(c̃+χ,1)

(0/0)

C
(1)
c̃+χ

√
Ber(2)

(k1/k2)
(κ)

× Pf

⎡⎢⎢⎢⎢⎢⎢⎣
(κb2 − κa2)

C
(1)
c̃+χZ

(c̃+χ−2,1)

(0/2) (κa2, κb2)

C
(1)
c̃+χ−2Z

(c̃+χ,1)

(0/0)

Z
(c̃+χ,1)

(1/1) (κb1, κa2)

(κb1 − κa2)Z
(c̃+χ,1)

(0/0)

Z
(c̃+χ,1)

(1/1) (κa1, κb2)

(κb2 − κa1)Z
(c̃+χ,1)

(0/0)

(κb1 − κa1)
C

(1)
c̃+χZ

(c̃+χ+2,1)

(2/0) (κa1, κb1)

C
(1)
c̃+χ+2Z

(c̃+χ,1)

(0/0)

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.11)

The indices a and b numerate all variables κ as in equation (4.5). Similar results are valid for
the cases of odd k2 − k1 or negative integer 2N + k2 − k1 + 1.

Let d = k2 − k1 + γN � 0. The moment matrices

M
(1)

(d) =
[∫ ∫

−∞�E1�E2�∞
P(E1)P (E2)

(
Ea−1

1 Eb−1
2 − Eb−1

1 Ea−1
2

)
dE1 dE2

]
1�a,b�d

(4.12)

for the real case with even d,

M̃
(1)

(d) =
[

M
(1)

(d)

{− ∫
R

P(E)Ea−1 dE
}

1�a�d{∫
R

P(E)Eb−1 dE
}

1�b�d
0

]
(4.13)

for the real case with odd d and

M
(4)

(d) =
[
(a − b)

∫
R

P(E)Ea+b−3 dE

]
1�a,b�d

(4.14)

for the quaternionic case generate the skew orthogonal polynomials, corresponding to the
symmetry. Considering the structure of the Berezinian, this shows an intimate connection
between the method of orthogonal polynomials and the supersymmetry method.

The Pfaffian structures (4.5) and (4.11) are well known [18]. However, those Pfaffian
structures involving the insertion of relations (4.3) and (4.9) into equation (3.20) are new
results. They show that something crucial happens when 2N + k2 − k1 + 1 is negative. The
derivation of these structures is purely algebraical. Hence, it is independent of the probability
density under consideration. Even with the help of the supersymmetry method one could not
reduce the number of integrals in such a substantial way.

9
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Table 1. Particular cases of the probability densities g(z1, z2) and h(z) and their corresponding
matrix ensembles of orthogonal rotation symmetry. The joint probability density is equivalent to
g(z1, z2) and h(z). The density h(z) only appears for odd-dimensional matrices.

Matrices in the Probability

Probability density characteristic densities g(z1, z2) probability

Matrix ensemble P for the matrices polynomials and g̃(z1, z2) density h(z)

Real symmetric matrices P̃ (tr Hm, m ∈ N) H P(x1)P (x2) P (x)δ(y)

[18, 24, 34] H = HT = H ∗ × δ(y1)δ(y2)�(x2 − x1)

Circular orthogonal P̃ (tr Um, m ∈ N) U and U † P(eıϕ1 )P (eıϕ2 ) P (eıϕ)δ(r − 1)

ensemble [4] U †U = 11N and × δ(r1 − 1)δ(r2 − 1)

UT = U × �(ϕ2 − ϕ1)

Real symmetric chiral P̃ (tr(AAT )m, m ∈ N) AAT P(x1)P (x2) P (x)δ(y)x(ν−1)/2

(real Laguerre) A is a real N × M × (x1x2)
(ν−1)/2

ensemble matrix with × δ(y1)δ(y2)�(x2 − x1)

[21, 37–39] ν = M − N � 0

Gaussian real elliptical exp

[
− (τ + 1)

2
tr HT H

]
H

∏
j∈{1,2} exp[−τx2

j ] exp(−τx2)δ(y)

ensemble; for τ = 1 × exp

[
− (τ − 1)

2
tr H 2

]
×

√
erfc(

√
2(1 + τ)yj )

real Ginibre ensemble H = H ∗; × [δ(y1)δ(y2)�(x2 − x1)

[10, 15, 16, 25, 40, 41] τ > 0 + 2ıδ(2)(z1 − z∗
2)�(y1)]

[23, 42, 43]

Gaussian real chiral exp[− tr AT A − tr BT B] CD
∏

j∈{1,2} exp[−2η−zj ] xν/2 exp[−2η−x]

ensemble [9, 44] C = A + μB × |zj |ν
√

f (2η+zj ) × Kν/2(2η+x)δ(y)

D = −AT + μBT × [δ(y1)δ(y2)�(x2 − x1)

A and B are + 2ıδ(2)(z1 − z∗
2)�(y1)]

real N × M matrices

with ν = M − N � 0

Another new insight of paramount importance is that the structures obtained for real
symmetric matrices and those for Hermitian self-dual matrices have a common origin. In
all the other methods [5, 18, 24], both cases were considered separately. Our method shows
that in both cases, in the real and in the quaternionic one, the underlying algebraic structure
yielding Pfaffian determinants is the same.

4.2. A list of other matrix ensembles

We average ratios of characteristic polynomials similar to the type (4.1) where the integration
domains are matrix sets different from the symmetric spaces. Those matrix sets have to be
rotation invariant either under the orthogonal group or the unitary symplectic group. For both
symmetries we give a list of ensembles to which the integrals (3.1) or (3.2) are applicable. A
real–imaginary part decomposition is zj = xj + ıyj and in polar coordinates it is zj = rj eıϕj .
Then, the probability densities in equations (3.1) and (3.2) are equivalent to the probability
densities in equation (4.1) after suitable changes of variables. The ensembles with orthogonal
symmetry are given in table 1 and those with unitary-symplectic symmetry are listed in
table 2.

10
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Table 2. Particular cases of the probability densities g̃(z1, z2) and their corresponding matrix
ensembles unitary-symplectic rotation symmetry. The joint probability density is equivalent to
g̃(z1, z2). All matrices have a quaternion structure and, thus, they are even dimensional.

Matrices in the
Probability density characteristic

Matrix ensemble P for the matrices polynomials Probability density g̃(z1, z2)

Hermitian, self-dual matrices P̃ (tr Hm, m ∈ N) H P (x1)δ(y1)δ(y2)
δ(x2 − x1)

x1 − x2

[18, 24] H = H †

Circular unitary-symplectical P̃ (tr Um, m ∈ N) U and U † P (eıϕ1 )δ(r1 − 1)

ensemble [4] U †U = 11N × δ(r2 − 1)
δ(ϕ2 − ϕ1)

sin(ϕ1 − ϕ2)

Hermitian self-dual chiral P̃ (tr(AA†)m, m ∈ N) AA† P (x1)x
M−N+1
1 δ(y1)δ(y2)

(quaternionic Laguerre) A is a quaternionic N × M × δ(x2 − x1)

x1 − x2

ensemble [21, 37–39] matrix with N � M

Gaussian quaternionic elliptical exp

[
− (τ + 1)

2
tr HT H

]
H exp[−2r2

1 (sin2 ϕ1 + τ cos2 ϕ1)]

ensemble; for τ = 1 quaternionic × exp

[
− (τ − 1)

2
tr H 2

]
× r1 sin(2ϕ1)δ(r1 − r2)δ(ϕ1 + ϕ2)

Ginibre ensemble [14, 22] H is a quaternionic matrix

Gaussian quaternionic chiral exp[−trA†A − tr B†B] CD K2ν (2η+r1)r
2ν
1

ensemble [8] C = ıA + μB × exp[2η−r1 cos ϕ1]

D = ıA† + μB† × r1 sin ϕ1δ(r1 − r2)δ(ϕ1 + ϕ2)

A and B are quaternionic
N × M matrices
with ν = M − N � 0

Our method can be applied to the examples in both tables by the same procedure as
described in section 4.1. One identifies the probability densities g, g̃ and h in equations (3.1)
and (3.2) with those obtained from the ensemble under consideration. Then, one can use the
results (3.17), (3.19) and (3.20).

All random matrix ensembles in tables 1 and 2 have physical relevance. Real symmetric
random matrices and Hermitian self-dual matrices model Hamilton operators of quantum
chaotic systems [45]. Also circular orthogonal and circular unitary-symplectical ensembles
have applications in quantum chaos. They describe Floquet operators in periodically driven
systems [45]. Real symmetric and Hermitian self-dual chiral ensembles are used to model
Dirac operators in QCD [38]. Furthermore one can consider all these physical systems in
the presence of a chemical potential. This yields for real symmetric and Hermitian self-
dual matrices the corresponding Ginibre ensembles and for the chiral case the two matrix
models.

The two-dimensional complex Dirac distribution used in table 1 is defined by

δ(2)(z1 − z∗
2) = δ(x2 − x1)δ(y2 + y1) = 1

r1
δ(r1 − r2)δ(ϕ1 + ϕ2). (4.15)

We use the short-hand notation

η± = 1 ± μ2

4μ2
, (4.16)

11



J. Phys. A: Math. Theor. 43 (2010) 135204 M Kieburg and T Guhr

cf [44]. The functions erfc and Kν are the complementary error-function and the K-Bessel
function of order ν, respectively. The function f is calculated in [44] and given by

f (x + ıy) = 2
∫ ∞

0
exp

[
−2t (x2 − y2) − 1

4t

]
Kν/2(2t (x2 + y2)) erfc(2

√
t |y|)dt

t
. (4.17)

As in section 4.1, we note that the Pfaffian structure arising in all those ensembles is
fundamental. Particularly, on the formal level, the obvious difference between ensembles
with orthogonal symmetry and those with unitary-symplectic symmetry becomes immaterial
in our derivation. The Pfaffian structure is exclusively due to the starting point (3.1) or (3.2).
Furthermore, we expect that the list of those ensembles given here is not complete yet.

5. Remarks and conclusions

We extended our method [26] to integrals of types (3.1) and (3.2) which are averages of
characteristic polynomial ratios. Those integrals have a Pfaffian structure whose kernels are
averages over one or two characteristic polynomials. This coincides with the known results for
particular matrix ensembles [5, 8, 18, 24] and generalizes those to the real Ginibre ensemble
and the Gaussian real chiral ensemble. Tables 1 and 2 show a wide class of ensembles for
which our results are valid. Remarkably, the Pfaffian structure arising for ensembles with a
real structure as well as with a quaternionic structure emerges from the same type of integral.
Thus, there is no difference between both symmetries from this formal point of view.

We showed that the Pfaffian structure is a purely algebraic property for factorizing
probability densities. This is a crucial new insight. It shows that supersymmetric structures
appearing in the integrand can be found without mapping onto superspace. Furthermore, they
are the ultimate reason for the existence of the Dyson–Mehta–Mahoux integration theorem
[32]. Our method also explains why one has found Pfaffian structures in so many areas of
random matrix theory. As we only perform algebraic manipulations, we expect that these
structures are even more general. This is indeed confirmed by the examples showed in the
tables 1 and 2.

Surprisingly, for the case of a large number of characteristic polynomials in the
denominator, the kernels reduce to one- and two-dimensional integrals. These integrals
are the mean value of one or two characteristic polynomials in the denominator over one- or
two-dimensional matrices, respectively. Thus, in this case, we have drastically reduced the
number of integrals, even below the number that would result when mapping onto superspace
[35, 46, 47]. This new insight shows that there are two regimes depending on the number
of characteristic polynomials. In the case k2 − k1 + 2N + 1 > 0 the matrix in the Pfaffian
determinant is up to few entries fully occupied whereas for k2 − k1 + 2N + 1 � 0 we have to
take a Pfaffian determinant of a sparsely occupied matrix.

In short, Pfaffian determinants stem in our method from purely algebraic manipulations.
This is the reason why our results are so general. No integration has to be performed. The
Pfaffian structures are already contained in the initial integrand.
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Appendix. Details of the calculations

In appendix A.1, we carry out the integrals in equation (3.3) for the case k2 + 2N + 1 � k1.
We derive the other case k2 + 2N + 1 � k1 in appendix A.2.

The case k2 + 2N + 1 � k1

Let d = k2 − k1 + 2N + 1 � 0 be odd. We are interested in the integral∫
C2N+1

h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

√
Ber(2)

(k1/k2+2N+1)(z̃) d[z] = (−1)k2(k2−1)/2+N

×
∫

C2N+1
h(z2N+1)

N∏
j=1

g(z2j−1, z2j ) det

⎡⎢⎢⎢⎢⎣
{

1

κa1 − κb2

}
1�a�k1

1�b�k2

{
1

κa1 − zb

}
1�a�k1

1�b�2N+1{
κa−1

b2

}
1�a�d

1�b�k2

{
za−1
b

}
1�a�d

1�b�2N+1

⎤⎥⎥⎥⎥⎦ d[z].

(A.1)

The first step is the integration over all variables zj with an odd index j . Thus, we have∫
C2N+1

h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

√
Ber(2)

(k1/2N+1+k2)
(z̃) d[z] = (−1)k2(k2−1)/2+N

×
∫

CN

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
1

κb1 − κa2

}
1�a�k2

1�b�k1

{
κb−1

a2

}
1�a�k2

1�b�d{∫
C

h(z)

κb1 − z
dz

}
1�b�k1

{∫
C

h(z)zb−1 dz

}
1�b�d⎧⎪⎨⎪⎩

∫
C

g(z, za)

κb1 − z
dz

1

κb1 − za

⎫⎪⎬⎪⎭ 1�a�N

1�b�k1

⎧⎨⎩
∫

C

g(z, za)z
b−1 dz

zb−1
a

⎫⎬⎭ 1�a�N

1�b�d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
d[z]. (A.2)

We perform the last integrals with the help of a modified de Bruijn’s integral theorem [26, 31]
and find∫

C2N+1
h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

√
Ber(2)

(k1/2N+1+k2)
(z̃) d[z] = (−1)N+1N !

× Pf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

{
1

κb1 − κa2

}
1�a�k2

1�b�k1

{K(d)(κa2)}
1�a�k2{

− 1

κa1 − κb2

}
1�a�k1

1�b�k2

{F(κa1, κb1)}1�a,b�k1
{G(d)(κa1)}1�a�k1{−KT

(d)(κb2)
}

1�b�k2

{−GT
(d)(κb1)

}
1�b�k1

M(d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.3)

with the matrices defined in equations (3.5)–(3.11). Finally, we extract the matrix M(d) from
the Pfaffian by inversion, see equation (2.12), and arrive at equation (3.4).
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The case k2 + 2N + 1 � k1

Let d = k2 − k1 + 2N + 1 � 0 be an arbitrary integer. Then, we calculate∫
C2N+1

h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

√
Ber(2)

(k1/k2+2N+1)(z̃) d[z]

= (−1)k1(k1−1)/2+k1−k2−1
∫

C2N+1
h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

× det

[{
1

κa1 − κb2

}
1�a�k1

1�b�k2

{
κb−1

a1

}
1�a�k1

1�b�−d

{
1

κa1 − zb

}
1�a�k1

1�b�2N+1

]
d[z]. (A.4)

As in appendix A.1, we integrate first over all variables with an odd index. This yields∫
C2N+1

h(z2N+1)

N∏
j=1

g(z2j−1, z2j )

√
Ber(2)

(k1/k2+2N+1)(z̃) d[z]

= (−1)k1(k1−1)/2+k1−k2−1
∫

CN

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
1

κb1 − κa2

}
1�a�k2

1�b�k1{
κa−1

b1

}
1�a�−d

1�b�k1{∫
C

h(z)

κb1 − z
d[z]

}
1�b�k1⎧⎪⎨⎪⎩

∫
C

g(z, zb)

κb1 − z
d[z]

1

κb1 − z

⎫⎪⎬⎪⎭ 1�a�N

1�b�k1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
d[z]. (A.5)

Again we use the modified version of de Bruijn’s integral theorem and obtain equation (3.20)
up to the Berezinian in the denominator.
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